Dynamic Emission of CH4 from a Rice-Duck Farming Ecosystem
نویسندگان
چکیده
Global climatic change induced by emissions of greenhouse gases from human activities is an issue of increasing international environmental concerns, and agricultural practices and managements are the important contributors for such emissions. This study investigated dynamic emission of methane (CH4) from a paddy field in a rice-duck farming ecosystem. Three different cultivation treatments, namely the organic fertilizer + duck (OF+D), chemical fertilizer + duck (CF + D), and chemical fertilizer (Control) treatments, were employed in this study. Experimental data showed that hourly variations of CH4 emission from the paddy field during the day were somewhat positively correlated (R = 0.7 for the OF + D treatment and R = 0.6 for the CF+D treatment) to the hourly changes in air temperatures in addition to the influences of the duck activities. The rate of CH4 emission for the CF+D treatment was higher than that of the Control treatment at the tillering stage, whereas the opposite was true at the heading stage. In contrary, the rate of CH4 emission for the OF + D treatment was always higher than that of the Control treatment regardless the tillering or heading stage. Our study revealed that the rate of CH4 emission depended not only on air temperature but also on the rice growth stage. A 6.7% decrease in CH4 emission and in global warming potential (GWP) was observed for the CF + D treatment as compared to the Control treatment. This study suggested that although the impacts of duckling on the emission of CH4 depended on the rice growth stage and air temperature regime, the introduction of ducks into the rice farming system in general mitigated the overall CH4 emission and thereby the GWP.
منابع مشابه
Methane efflux from rice-based cropping systems under humid tropical conditions of eastern India
Tropical rice paddy is considered to be one of the major anthropogenic source of atmospheric methane (CH4). In a field study spread over the dry and wet seasons of a calendar year, the CH4 emission from upland (oilseed and pulse) crops in the dry season and a succeeding lowland rice (Oryza sativa L.) crop in the wet season was compared with rice–rice rotation in both seasons under flooded condi...
متن کاملControl Effects of Two-Batch-Duck Raising with Rice Framing on Rice Diseases, Insect Pests and Weeds in Paddy Field
Rice-duck farming system is one of the means of organic rice farming, in which the weeds, diseases and insects could be effectively controlled with minimal or no pesticide and herbicide application. Whereas in conventional rice-duck farming system the controlling effect on diseases, insect pests and weeds was slowly disappeared after the rice heading stage at which ducks were driven out of the ...
متن کاملMethane and nitrous oxide emissions from rice paddy fields
Recent field studies in rice paddy fields in Japan and China have shown that N2O is emitted to the atmosphere not only after the application of nitrogen fertilisers under flooded conditions but also in a period from the final drainage to submergence in the following rice-growing season through nitrification or denitrification. Those results clearly indicate that CH4 and N2O emissions in rice pa...
متن کاملEffect of controlled drainage in the wheat season on soil CH4 and N2O emissions during the rice season
The effect of draining crop fields during the wheat season on the soil CH4 andN2O emissions during the rice season in this article. There were four treatments:traditional cultivation during the wheat season + cultivation without fertilizationduring the rice season (CK1 field), traditional cultivation during the wheat season +traditional cultivation during the rice season (CK2 field), draining t...
متن کاملThe Emissions of Carbon Dioxide, Methane, and Nitrous Oxide during Winter without Cultivation in Local Saline-Alkali Rice and Maize Fields in Northeast China
Agricultural ecosystems are important contributors to atmospheric greenhouse gasses (GHGs); however, in situ winter emission data in saline-alkali fields are scarce. Gas samples were collected during different periods, from three rice (R1–R3) and three maize (M1–M3) fields with different soil pH levels and salinity conditions. Carbon dioxide (CO2) emissions in the rice and maize fields decrease...
متن کامل